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Geometric phase of spin-1 in a rotating magnetic field
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The quantum phase and the related fields have attracted considerable attention. The geometric phase
of spin-1/2 particle in the magnetic field has been discussed comprehensively, but few of spin-1. In this
paper, the exact solution of spin-1 was obtained by using rotational frame method. The problems of the
Rabi oscillation, dynamical phase, and geometric phase were solved.
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Since the geometric phase was introduced by Berry[1], it
has been researched widely, and its existence has been
verified experimentally in many physical branches, such
as nuclear physics, atomic and molecular physics, optics
and the solid physics. Simultaneously, there are many
developments on research method[2−6] .

There have already been comprehensive discussions for
the geometric phase of spin-1/2 particle in the conic
magnetic field[7,8]. However, only a few articles pene-
trate with discussing the geometric phase of spin-1 par-
ticles. In 1989, Mizrahi[9] brought forward the invari-
able method of constructing general Hamiltonian, and
obtained the Aharonov-Anandan phase of spin-1/2 par-
ticle in the invariable magnetic field. In his method,
the most important thing is to construct an invariable
operator Î(t). Î(t) is simple and the solving process is
easy for spin-1/2 system, however, it is complicated and
the solving process is difficult for spin-1 system. Cui et
al.[10] have treated the Berry phase of spin-1 particles in
a conic magnetic field by solving the Schrödinger equa-
tion directly, whereas their discussions are not extended
to other complex circumstances. In this article, the ex-
act solution of spin-1 particle has been obtained in the
rotating magnetic field by using rotating frame method.
We have obtained the exact analytic expressions of the
polarization vector, three-level Rabi oscillation, geomet-
ric phase, and dynamic phase.

First of all, we discuss the motion of a spin moment M̂s

in a rotating magnetic field B(t) = B0ez +B1(cosωtex +
sinωtey). And the Hamiltonian of this system can be ex-
pressed as

Ĥ(t) = −M̂s ·B(t) = γĴs ·B(t)

= h̄(Ω0Îz + Ω1Îx cosωt+ Ω1Îy sinωt), (1)

where Ĵs is the spin momentum, ω is the rotational fre-
quency of magnetic field, γ = gs

e
2M is the particle gyro-

magnetic ratio. And Î = Ĵs/h̄, Ω0 = γB0, Ω1 = γB1.
We use the rotating frame method to get the solution of

the spin-1 particle. At first, a rotational transform R̂(t)
is introduced, which transfers wave function ψ(t) to the
wave function ψe(t) of rotating frame ψ(t) = R̂(t)ψe(t) =
exp(−iωÎzt)ψe(t). Then we get the Schrödinger equation
in a rotational frame as

i
∂ψe(t)
∂t

= {(Ω0 − ω)Îz + Ω1Îx}ψe(t).

It is noted that the Hamiltonian is time-independent
in rotational frame. So it is easy to get the equation

ψe(t) = exp[−i{(Ω0 − ω)Îz + Ω1Îx}t]ψe(0)

= exp{−iΩ(n · Î)t}ψe(0), (2)

where n(Ω1
Ω , 0,−Δ

Ω ) = n(sinα, 0, cosα).
The exact solution can be expressed as

|ψ(t)〉 = Û(t) |ψe(0)〉 , (3)

here U(t) = exp(−iωÎzt) exp[−iΩ(n · Î)t] is a unitary ma-
trix, which can be expressed as a 3 × 3 matrix with the
following elements,

U11 = U∗
33 = e−iωt[

1
2

sin2 α

+
1
2
(1 + cosα) cos Ωt+ i cosα sin Ωt],

U12 = e−iωtU21 = −U∗
32 = −e−iωtU∗

23

= e−iωt[− 1
2
√

2
sin 2α(1 − cosΩt) +

i√
2

sinα sin Ωt],

U13 = U∗
31 = e−iωt[−1

2
sin2 α(1 − cosΩt)],

U22 = cos2 α+ sin2 α cosΩt.

Equation (3) is the final result obtained by using ro-
tating frame method.

Next, we compute some important physical quanti-
ties, such as the polarization, Rabi oscillation, dynami-
cal phase, and geometric phase by using the result solved
above.

Now we calculate the spin polarization vector and the
Rabi oscillation. From Eq. (3) we get

P(t) = 〈ψ(t)| Î |ψ(t)〉

= 〈ψ(0)| Û+ÎÛ |ψ(0)〉 = tr[ρ̂0Û
+ÎÛ ], (4)

where ρ0 = |ψ(0)〉 〈ψ(0)| is the initial density matrix.
Substituting Eq. (3) into Eq. (4), we obtain a compact
result

P(t) = K(t)P(0),
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K(t) =

⎛⎝ cosωt sinωt 0
sinωt − cosωt 0

0 0 1

⎞⎠⎛⎝ cos2 α cosΩt+ sin2 α − cosα sin Ωt sin 2α(1 − cosΩt)/2
− cosα sin Ωt − cosΩt sin Ωt

sin 2α(1 − cosΩt)/2 sinα sin Ωt cos2 α+ sin2 α cosΩt

⎞⎠ , (5)

α = arcsin (Ω1/Ω).
Now we discuss the Rabi oscillation of above three-

level system. Let W±(t) = |C±(t)|2 and W0(t) =
|C0(t)|2 represent the probabilities of Ĵz taking eigen-
values ±h̄, 0 respectively under the state |ψ(t)〉 =
(C+(t), C0(t), C−(t))T . Figure 1 shows the oscillation of
Wi(t) with a period T = 2π

Ω which is half of the P(t)’s
period 2π

ω .
In the following, we compute the non-adiabatic dy-

namic phase and geometric phase with the Aharonov-
Anandan formula[11]. Undergoing a cyclic evolution, the
total phase φ(T ) of the system is equal to the sum of
geometric phase γg(T ) and dynamic phase γd(T ),

φ(T ) = γd(T ) + γg(T ),

and

γd(τ) = − 1
h̄

τ∫
0

dt 〈ψ(t)|Ĥ(t) |ψ(t)〉

γg(τ) = i
τ∫
0

〈
ψ̃(t)

∣∣∣ ∂
∂t

∣∣∣ψ̃(t)
〉
dt

⎫⎪⎪⎬⎪⎪⎭ , (6)

here ψ̃(t) = exp(−iωt)ψ(t).
Next, we compute the geometric phase and dynamic

phase. Taking the initial state as eigenstate of Jz = h̄,

|ψ+(0)〉 =

(
1 + cosϑ0

2
e−iϕ0 ,

√
1
2

sinϑ0,
1 − cosϑ0

2
eiϕ0

)T

,

T denotes the transposition. By a direct computation we
obtain

γd(τ) = − 1
h̄

τ∫
0

dt 〈ψ(0)|ĤU (t) |ψ(0)〉

= − sinΩτ
Ω

[cosϑ0(Ω0 sin2 α− Ω1

2
sin 2α)

+ sinϑ0 cosϕ0(Ω1 cos2 α− Ω0

2
sin 2α)],

where ĤU (t) = Û †Ĥ(t)Û . With the formula we get the
geometric phase as

Fig. 1. Rabi oscillation in rotating magnetic field for spin-1
particles. Ω0

ω
= 1.5, Ω

ω
= 2, ϑ0 = ϕ0 = 0.

Fig. 2. Dynamic phase and geometric phase within one pe-
riod of initiation to be the eigenstate h̄. ω = 1, Ω0 = 1.5,
Ω = 2, ϑ0 = ϕ0 = 0.

γg(τ) = i

τ∫
0

〈
ψ̃(0)

∣∣∣U †U̇
∣∣∣ψ̃(0)

〉
dt

=
sin Ωτ

Ω
(ω sin2 α cosϑ0 − ω

2
sin 2α sinϑ0 cosϕ0)

−1 − cosΩτ
Ω

(ω sinϑ0 sinα sinϕ0)

+τ(cosϑ0 cosα+ sinϑ0 cosϕ0 sinα)(ω cosα+ Ω) − ωτ.

The total phase φ(τ) = γg(τ) + γd(τ) = −ωτ is ac-
quired within one period as expected. Figure 2 shows
the change of phases with time.

As taking the initial state to be the eigenstate of J = 0,

|ψ0〉 =
(
−
√

1
2 sinϑ0e−iϕ0 , cosϑ0,

√
1
2 sinϑ0eiϕ0

)T

, af-
ter a similar computation mentioned above, we obtain
γd = 0, γg = −ωτ , and φ = −ωτ . On the other hand, if
the initial state is the eigenstate of J = −h̄, |ψ−〉 =(

1
2 (1 − cosϑ0)e−iϕ0 ,−

√
1
2 sinϑ0,

1
2 (1 + cosϑ0)eiϕ0

)T

,

we get γ−g (τ) = −γ+
g (τ) − 2ωτ , γ−d (τ) = −γ+

d (τ),
φ−(τ) = φ+(τ), where the superscripts ± stand for
the eigenvalues ±h̄.

We remark that the system of spin-1 particle can be
seen as spin parallel triplet of two spin-1/2 particles on
neglecting interaction (such as double-electron). Also
atom, molecule or nucleus system of total angular mo-
mentum J = h̄ can gain A-A geometric phase in rotating
field[12]. This results may be used for some three-level
systems and some optic systems. Song et al.[13] studied
the fifth-order attosecond sum-frequency polarization
beat (FASPB) in a cascade three-level system. In some
problems of quantum dot, for example, if the potential
field is syntonic and only reserving the lowest three-level
energy and neglecting other higher-level energy under
low temperature (leakage approximation), this simplified
three-level energy system (such as three-level system of
spin-1 composed with two protons[14]) can be described
as spin-1.
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As another possible application of this work, we note
that the geometric quantum computation has attracted
many attentions owing to its high fidelity[15−21]. Re-
cently, using an orthogonal method, to two-level system,
Gao et al.[20,21] presented a scenario for the non-adiabatic
geometric quantum computation, the quantum gates are
obtained with all advantages of holonomic geometric
quantum gates. We remark that the scheme can be par-
allel extended to the three-level system investigated in
this paper.

In summary, this paper obtain the exact solution
of magnetic moment of spin-1 particle in the rotating
magnetic field by the rotating frame method. We also
compute various important physical quantities, such as
three-level Rabi oscillation, geometric phase etc..
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